Notes:

1. “Existing Slopes” in this context are slopes that are not part of a recognizable landslide and have demonstrated non-failure performance over at least several seasons or events of extended adverse weather, usually being a period of at least 10 to 20 years.

2. “Existing Development” includes existing structures, and slopes that have been modified by cut and fill, that are not located on or part of a recognizable landslide and have demonstrated non-failure performance over at least several seasons or events of extended adverse weather, usually being a period of at least 10 to 20 years.

3. “New Constructed Slope” includes any change to existing slopes by cut or fill or changes to existing slopes by new stabilisation works (including replacement of existing retaining walls or replacement of existing stabilisation measures, such as rock bolts or catch fences).

4. “New Development” includes any new structure or change to an existing slope or structure. Where changes to an existing structure or slope result in any cut or fill of less than 1.0m vertical height from the toe to the crest and this change does not increase the risk, then the Existing Slope / Existing Structure criterion may be adopted. Where changes to an existing structure do not increase the building footprint or do not result in an overall change in footing loads, then the Existing Development criterion may be adopted.

5. “Existing Landslides” have been considered likely to require remedial works and hence would become a New Constructed Slope and require the lower risk. Even where remedial works are not required per se, it would be reasonable expectation of the public for a known landslide to be assessed to the lower risk category as a matter of “public safety”.

Acceptable risks are usually considered to be one order of magnitude lower than the Tolerable Risks.

It is important to distinguish between “acceptable risks” and “tolerable risks”.

Tolerable Risks are risks within a range that society can live with so as to secure certain benefits. It is a range of risk regarded as non-negligible and needing to be kept under review and reduced further if practicable.

Acceptable Risks are risks which everyone affected is prepared to accept. Action to further reduce such risk is usually not required unless reasonably practicable measures are available at low cost in terms of money, time and effort.

AGS suggests that for most development in existing urban area criteria based on Tolerable Risks levels are applicable because of the trade-off between the risks, the benefits of development and the cost of risk mitigation.

The Commentary discusses Individual and Societal risk to loss of life. Usually Societal risk need not be considered for a risk evaluation in relation to a single dwelling. Societal risk should be evaluated for buildings having high numbers of occupants, such as schools, hospitals, hotels or motels where many lives are at risk. This then addresses society’s aversion to loss of many lives from single landslide events.

The Tolerable Risk Criteria for property loss may be determined by the Importance Level of the development (Appendix A) as discussed in the Commentary.

9 RISK MANAGEMENT

9.1 RISK MITIGATION PRINCIPLES

9.1.1 Feasible options for risk mitigation for each risk assessment are to be identified and discussed including the reduced risk by adoption of those options.

Alternative methods to be explored include:

a. **Accept the risk**, which is only an option subject to the criteria set by the regulator. Where the risk is not tolerable then risk mitigation measures are required.

b. **Avoid the risk**, such as relocation of the site of proposed development, or revise the form of the development, or abandon the development (though this may still require some risks to be controlled due to possible effect on third parties adjacent or nearby).

c. **Reduce the frequency of landsliding**, by stabilisation measures to control the initiating circumstances, such as by re-profiling the surface geometry where existing slopes are ‘over steep’, by provision of improved surface water drainage measures, by provision of subsurface drainage scheme, by provision of retaining structures such as retaining walls, anchored walls or ground anchors.

d. **Reduce the consequences**, by provision of defensive stabilisation measures or protective measures such as a boulder catch fence, or amelioration of the behaviour of the landslide, or by relocation of the development to a more favourable location.
e. **Manage the risk by establishing monitoring and warning systems**, such as by regular site visits, or by survey, which enable the risks to be managed as an interim measure in the short term or as a permanent measure for the long term by alerting persons potentially affected to a change in the landslide condition. Such systems may be regarded as a method of reducing the consequences provided it is feasible for sufficient time to be available between the alert being raised and appropriate action being implemented.

f. **Transfer the risk**, such as by requiring another authority to accept the risk (possibly via a court appraisal) or by provision of insurance to cover potential property damage.

g. **Postpone the decision**, where there is sufficient uncertainty resulting from the available data, provided that additional investigations or monitoring are likely to enable a better risk assessment to be completed. Postponement is only a temporary measure and implies the risks are being temporarily accepted, even though they may not be acceptable or tolerable.

Adoption of particular risk mitigation measures needs to be documented so that the decisions are transparent to future land owners and to the regulator. The documentation will need to make it clear whether there is ongoing maintenance required or not. Responsibility for implementation of the risk mitigation measures (including auditing and reporting) resides with the land owner, particularly where ongoing maintenance is required.

It should be recognized that there may be situations where the risk is such that either no development should occur, or that very strict conditions and/or extensive investigations and implementation of risk control measures will be required. Such risk control measures may render the proposed development unworkable.

9.1.2 Wherever possible the recommended options should be engineered to reduce the uncertainties.

It is not possible to remove risk, but it can be reduced.

Risk mitigation options should include robust engineering design to reduce uncertainties and hence the risk.

Guidance on good engineering practice for hillside design and construction is given in Appendix G which has been reproduced from AGS (2000).

It is necessary that the options considered lower the risk to at least tolerable levels. In many cases, the ALARP principle (“As Low As Reasonably Practicable” as discussed in the Commentary) may apply so that reduction to a tolerable level is a pragmatic result since reduction to acceptable levels is not viable in the context of the cost to the individual or community. In other cases, good practice may suggest that risk reduction be applied since it is relatively cheap or cost effective to implement even though risk levels are assessed to already be at acceptable levels. In other words, risk minimization should be a governing feature or tenet of LRM.

Evaluation of mitigation options may take into account relative costs and effectiveness of the measures and inherent uncertainties. Combinations of mitigation measures may be appropriate.

The options should be reassessed if there is a need to reduce uncertainties or if suitable engineering options cannot be adopted.

An issue will be who decides on what level of risk reduction is appropriate. This is dependent on the risk tolerance criteria set by the regulator. The owner is likely to input into selection of the options, subject to approvals by the regulator. For some cases, there may be discussion between the stakeholders to select a suitable scheme of risk mitigation measures.

9.1.3 The adopted risk mitigation measures are to be detailed in a mitigation plan to explain and document the implementation of the measures.

The mitigation plan should identify responsibilities for each stakeholder during and after implementation. It may also include cost estimates, programme, required inspection regime, performance measures and expected outcomes. The level of detail will depend on the priority for the option and stage of the evaluation and implementation process.

The mitigation plan may include an emergency plan which should establish from the outset the sequence of events or monitoring results that will activate this plan. The plan may include a number of warning levels and consequent actions. The plan must be carefully reviewed to confirm it is workable and will achieve the desired risk mitigation.

The existence of the mitigation plan needs to be readily known to subsequent land owners. The most readily available method for this is to register the mitigation plan details on the land title.
9.1.4 The risk should be subject to monitoring and review during the assessment of options, during implementation of the risk mitigation measures and during the ongoing monitoring.

Further data may come to light during the management process which enables the risks to be re-assessed. Such data may be adverse, requiring more stringent risk mitigation measures, or alternatively may be positive by demonstrating satisfactory slope performance under adverse conditions. It is anticipated that the practitioner would have a primary role in the monitoring and review process and particularly to confirm the requirements of the approval conditions had been fulfilled.

9.2 SITE SPECIFIC DEVELOPMENT CONDITIONS

Identify appropriate site specific development conditions to provide good practice and control the risks to acceptable levels.

In the context of advice from a technical expert (the practitioner) acting in a consultant capacity, development controls would usually constitute ‘recommendations’, but as they will be integral with the risk assessment of the final development they may not be optional to the client. The practitioner should provide a statement as to the appropriateness of the development proposals in relation to the risk management requirements.

If ‘certification’ of the completed development is required (by the planning scheme or regulator’s approval conditions), then the development conditions and associated inspections and documentation must be sufficient to enable this to be provided at the later date.

The development conditions should be subdivided into those required at each of the stages of detailed design, construction (including appropriate sequencing and temporary works), and for maintenance. The development conditions must address all the factors relevant to controlling the landslide risk.

9.3 DESIGN LIFE

9.3.1 Design of the risk mitigation measures is to be suitable for the time frame of the life of the structure - the design life. The design life is to be clearly stated on the design drawings.

Often the design life will be that specified by relevant design codes such as 40 to 60 years for AS3600 Concrete Code, 50 years for AS2870 Residential Slabs and Footings, or for 5 years to 120 years for temporary site works to major public works respectively for AS4678 Earth Retaining Structures.

A design life of at least 50 years would be considered to be reasonable for permanent structures used by people. Some local government policies may require a longer design life as discussed in the Commentary. However, for some structures, such as timber retaining walls, inherent performance of the materials will limit the effective performance life to less than the required design life.

9.3.2 Where the effective performance life is less than the required design life, then the effective life should be extended by a maintenance regime designed to overcome the limitations and to enable the performance to be assessed throughout the required design life. This is likely to require more extensive repair and replacement as determined by regular maintenance inspections.

For example, experience shows the longevity of timber crib walls is less than for a concrete structure, due to faster degradation of timber with time. Therefore, a more frequent inspection and maintenance / repair / replacement regime will be required for timber crib walls to enable suitable repair and replacement so that a reasonable design life can be achieved. Similar considerations will apply to subsoil drains and stressed anchors.

9.4 MAINTENANCE REQUIREMENTS

9.4.1 The design is to include details of required inspections and maintenance to enable the risk mitigation measures to remain effective for at least the design life of the structure.

Risk mitigation is not just an exercise in LRM documentation, design of the works and construction of the risk mitigation measures. The owner, including all owners subsequent to those responsible for commissioning the risk mitigation measures, has a responsibility to inspect and maintain the risk mitigation measures.

9.4.2 Refer to the AGS Australian GeoGuide LR111 which provides advice on record keeping.

The other GeoGuides (AGS, 2007e) also provide advice on the frequency of maintenance tasks.