behaviour in the study area. It is often useful to allow for a range of travel distances in the calculation and express that range in probabilistic terms as discussed in the Commentary.

The annual probability of the landslide and probability of spatial impact may be considered together in qualitative terms as likelihood of impact on the element at risk being considered.

6 CONSEQUENCE ANALYSIS

6.1 ELEMENTS AT RISK

The elements at risk will include:

• Property, which may be subdivided into portions relative to the hazard being considered.
• People, who either live, work, or may spend some time in the area affected by landsliding.
• Services, such as water supply or drainage or electricity supply.
• Roads and communication facilities.
• Vehicles on roads, subdivided into categories (cars, trucks, buses).

These should be assessed and listed for each landslide hazard.

For some cases, other risks may also have to be considered. For example:

• Environmental, where the elements at risk are environmental (rather than man made), such as forests or water bodies.
• Social, where the consequences of the landslide may have an impact on social conditions, such as the cost of disruption to traffic where roads are affected.
• Political, where the consequences may not be acceptable in political terms.

6.2 TEMPORAL SPATIAL PROBABILITY (Pr,T:S)

When the elements at risk are mobile (e.g. persons on foot, in cars, buses and trains) or where there is varying occupancy of buildings (e.g. between night and day, week days and weekends, summer and winter), it is necessary to make allowance for the probability that persons (or a particular number of persons) will be in the area affected by the landslide. This is called the Temporal Spatial Probability.

For where the elements at risk are mobile it is proportion of a year (between 0 and 1.0) in which a person, car or bus will be below or on the landslide when it occurs. For occupancy of buildings it is a calculation of the proportion of a year (between 0 and 1.0) which the number of persons being considered occupy the building, or the area of the building likely to be impacted.

These calculations should allow for the possibility that the persons may have warning of the impending landslide and may evacuate the area. Each case should be considered by taking account of the details of the situation. Generally persons on a landslide are more likely to observe the initiation of movement and move off the slide, than those who are below a slide which falls or flows onto them unless the rates of movement are slow.

6.3 EVALUATION OF CONSEQUENCE TO PROPERTY

6.3.1 Estimate the extent of damage likely to property arising from each of the landslides.

This requires an understanding of the landslide characteristics and experience in assessing the likely impact on property. The consequences are often calculated using the vulnerability (V(Prop:S)) of the elements at risk to the landslide.

The factors which most affect vulnerability of property are:

• The volume of the slide in relation to the element at risk.
• The position of the element at risk, e.g. on the slide, or immediately downslope.
• The magnitude of slide displacement, and relative displacements within the slide (for elements sited on the slide).
• The rate of slide movement.

It should be noted that the vulnerability refers to the degree of damage (or damage value in absolute or relative terms) which is judged to be likely if the landslide does occur.

As discussed below, the assessment should be based on a quantitative estimate to enable clarification of the judgment which for a qualitative assessment may be subject to considerable interpretation.

6.3.2 Estimate the indicative cost of the damage.

This requires use of indicative costs of building and remedial works. Frequently, broad brush ‘guesstimates’ will suffice, but the ‘guesstimate values’ and basis should be documented. Some guidance is given in the Commentary. It should not be necessary to use a quantity surveyor to establish a more accurate estimate as usually the broad brush guesstimate will suffice for allocation of a consequence term in a qualitative scheme such as in Appendix C.

The indicative cost of damage is to be the Total Cost as this is the most relevant to the owner. Components to be considered comprise:-
• Direct costs related to reinstatement works for damaged portions of the property (structures and the land).
• Stabilization works required to render the site to an tolerable risk level for the landslide.
• Professional and approvals fees.
• Consequential costs (such as legal fees and alternative temporary accommodation).

It does not include additional stabilisation works to address other landslides which may affect the property.

6.3.3 Estimate the market value.
This may be achieved by reference to property sale values within the local area which will reflect the value of the land plus structures. The client is likely to have some knowledge of the local market values. Again, a broad-brush guesstimate should often suffice.

6.3.4 Consider the resulting Consequence classification, such as using Appendix C, and implied accuracy of the above estimates.
It is not expected that the assessor will be a quantity surveyor or have similar experience, but that sensible estimates, possibly as a range, can be made and documented. Statement of limits of accuracy or uncertainty are appropriate for sensitivity and appraisal analysis.

6.4 EVALUATION OF CONSEQUENCES TO PERSONS
The following factors influence the likelihood of deaths and injuries or vulnerability \(V_{(D:T)} \) of persons who are impacted by a landslide:

• Volume of slide.
• Type of slide, mechanism of slide initiation and velocity of sliding.
• Depth of slide.
• Whether the landslide debris buries the person(s).
• Whether the person(s) are in the open or enclosed in a vehicle or building.
• Whether the vehicle or building collapses when impacted by debris.
• The type of collapse if the vehicle or building collapses.

Persons are very vulnerable in the event of complete or substantial burial by debris, or the collapse of a building. It should be noted that even small slides, and single boulders, can kill people.

Appendix F provides some indicative examples of vulnerability values. The Commentary provides some more detailed discussion.

7 RISK ESTIMATION

7.1 QUANTITATIVE RISK ESTIMATION
Quantitative risk estimation involves integration of the frequency analysis and the consequences.

For property, the risk can be calculated from:

\[
R_{(Prop)} = P_{(H)} \times P_{(S:H)} \times P_{(T:S)} \times V_{(Prop:S)} \times E
\]

Where

- \(R_{(Prop)} \) is the risk (annual loss of property value).
- \(P_{(H)} \) is the annual probability of the landslide.
- \(P_{(S:H)} \) is the probability of spatial impact by the landslide on the property, taking into account the travel distance and travel direction.
- \(P_{(T:S)} \) is the temporal spatial probability. For houses and other buildings \(P_{(T:S)} = 1.0 \). For Vehicles and other moving elements at risk \(1.0 < P_{(T:S)} > 0 \).
- \(V_{(Prop:S)} \) is the vulnerability of the property to the spatial impact (proportion of property value lost).
- \(E \) is the element at risk (e.g. the value or net present value of the property).

For loss of life, the individual risk can be calculated from:

\[
R_{(LoL)} = P_{(H)} \times P_{(S:H)} \times P_{(T:S)} \times V_{(D:T)}
\]

Where

- \(R_{(LoL)} \) is the risk (annual probability of loss of life (death) of an individual).
- \(P_{(H)} \) is the annual probability of the landslide.
- \(P_{(S:H)} \) is the probability of spatial impact of the landslide impacting a building (location) taking into account the travel distance and travel direction given the event.
- \(P_{(T:S)} \) is the temporal spatial probability (e.g. of the building or location being occupied by the individual) given the spatial impact and allowing for the possibility of evacuation given there is warning of the landslide occurrence.
- \(V_{(D:T)} \) is the vulnerability of the individual (probability of loss of life of the individual given the impact).

A full risk analysis involves consideration of all landslide hazards for the site (e.g. large, deep seated landsliding, smaller slides, boulder falls, debris flows) and all the elements at risk.